PROGRAM ABSTRACTS/ALGORITHMS

Data-editing BASIC programs for creating, modifying, and combining Apple II disk files

RICHARD F. WEST
James Madison University, Harrisonburg, Virginia

A wide assortment of statistical analyses can now be conducted on conveniently available microcomputers using programs written in the BASIC language (e.g., Lyczak, 1980). Indeed, Behavior Research Methods & Instrumentation has served as a source for numerous statistical programs that can perform tasks that range from t tests and multiple-regression analyses to large-design, between- and within-subject ANOVAs (e.g., Galli, 1981; Gorman & Prinswater, 1981; Hacker & Argollo-Boit; 1981; Lane, 1981; Steimetz, Romano, & Patterson, 1981; Walch, 1981). Random-access data files stored on floppy disks provide an efficient way to store data that will be used in statistical analyses conducted on microcomputers. These files store separate data items in a sequence of individually accessible "records" that are identified by a number that indicates the record's position in a file. Unfortunately, the built-in editing functions of most microcomputers cannot be used to edit disk files, and programs must be written to create and edit these files. Writing such programs can be time-consuming, particularly if the data are to be analyzed in more than one way or if they are stored in more than one file. The menu-driven data-editing package of five programs described here provides a user-friendly means of creating and editing random-access data files for the Apple II microcomputer.

Description. FILE EDITOR presents a menu that runs any of the four other editing programs or a statistical analysis menu. FILE MAKER can be used to create a new random-access data file, to add data to an existing file, to insert or delete a specific record (i.e., data item), to change an existing record, to list a specific record, or to list the data in a file in a subject-by-variable format. FILE VAR COMBINE can be used to form a new data file that contains a user-selected subset of subjects and variables from one or more existing files. The order in which the variables are entered into the new file can be specified. In addition, new variables that are formed by summing, taking the difference between, or averaging two variables can be entered into the new file. FILE MERGER-END can be used to form a new data file that contains the records from one existing file followed by the records from a second existing file. FILE MERGER-MIDDLE forms a new data file that contains the first-half records from one existing file, then the first-half records from a second existing file, and, finally, the second-half records of the two existing files. Each editing program can return to the FILE EDITOR menu for additional editing-function selection. Data are saved in disk files prior to a switch to a new editing program and can be loaded into the newly selected program as needed. Finally, the editing programs contain routines designed to protect against the accidental overwriting or erasure of data in existing files.

Limitations. A number of the editing functions are carried out by use of arrays that have been dimensioned to contain a maximum of 5,000 elements (i.e., data items). Although a single program could have been written to carry out the editing functions described above, such a program would have been large, thus greatly reducing the amount of memory available for data (e.g., array values require 5 bytes each). One characteristic of Apple II random-access files is that each record in a given file holds the same amount of information (i.e., number of bytes or characters). The number of bytes that can be stored in a record of a given file is referred to as the record "length," which must be specified when the file is created. As written, the data-editing programs create files with a record length of 10. Thus, a data item may not exceed 10 decimal places in length. This maximum length can easily be changed by changing the value of the second variable in each program prior to running that program.

Computational and Language Requirements. Programs are written in APPLESOFT BASIC and run on an Apple II Plus microcomputer with two disk drives, 48K RAM, and language card. No modifications should be needed to run on a 48K system that has no language card. A single disk-drive system can be used if, prior to running a program, the value of the first variable in the program is changed to "1" (this variable indicates the drive number of the disk containing the data files).

RAM and Time Requirements. Each program has been written in two forms. One form is documented, and the other form is undocumented and contains several statements on each program line. The documented programs take up between 836 and 5,972 bytes of RAM, whereas the more compact versions take up between 687 and 3,445 bytes in RAM. Although the more compact programs run slightly faster than the documented programs, their compact form makes them difficult to edit; their main value lies in the economical use of RAM. As a result, the more compact forms of the

The author's mailing address is: Department of Psychology, James Madison University, Harrisonburg, Virginia 22807.

Copyright 1983 Psychonomic Society, Inc.
Availability. A listing of the data-editing programs and instructions on their use (including examples of how they can be used with statistical programs) can be obtained without charge by writing Richard F. West, Department of Psychology, James Madison University, Harrisonburg, Virginia 22807. A diskette containing both the documented and more compact forms of the editing programs, as well as examples of statistical programs that can use data from the created files, is available for $8.00 (to cover diskette and mailing costs).

REFERENCES

(Revision accepted for publication February 22, 1983.)
DISCLAIMER: No warranty (expressed or implied) is made by
the author or by James Madison University as to the accuracy
or functioning of the Data-Editing and accompanying programs
or their documentation. Although considerable effort has
been made to minimize the likelihood of accidental data
loss, such loss remains a possibility. While practice with
the use of the programs should lessen the chance of data
loss, it is recommended that disks not be used as the sole
means of important data storage.
INTRODUCTION:

The menu-driven data-editing package of five programs described below provides a user-friendly means of creating and editing random-access data files for the Apple microcomputer. (See West, BRI, 1983, for a description of the package and its limitations.) These programs are written in Applesoft BASIC and run on an Apple II (plus) microcomputer with two disk drives and 48K RAM. A single disk drive system can be used when simple modifications are made in the programs (see "FOR SINGLE DRIVE SYSTEMS" below). A number of the editing functions of these programs are carried out by use of arrays that have been dimensioned to contain a maximum of 5000 elements (i.e., data items).

The random-access data files created by these programs store separate data items in a sequence of individually accessible "records" that are identified by a number which indicates the record's position in a file. One characteristic of Apple II random-access files is that each record in a given file holds the same amount of information (i.e., number of bytes or characters). The number of bytes that can be stored in a record of a given file is referred to as the record "length", which must be specified when a file is created or accessed. As written, the data-editing programs default to a record length of ten. Thus, a data item may not exceed ten decimal places in length (it can be shorter). Although it is recommended that you leave this value at ten, this maximum length can easily be changed by changing the second variable in each program prior to running that program. Thus, the value of variable "n" in line 30 of FILE MAKER can be changed (it is now 10) if a different maximum record length is desired. Please note, however, that the use of a program that specifies a record length different from that actually used when the file was created will result in the loss of data from that file.

GETTING STARTED:

Place a back-up disk containing the editing programs in drive number 2. The second disk will be used to store data files.

Five programs are involved in the editing of files. Although each program can be run individually, it will normally be convenient to run the FILE EDITOR program first. This program presents a menu that runs any of the four other editing programs or the statistical analysis menu. Each editing program can return to the FILE EDITOR menu for additional editing function selection. A second copy of FILE EDITOR can be used as the HELLO program so that this program will run when the disk is booted.
FILE EDITOR:

This program will present the following menu:

INDICATE DESIRED EDITING FUNCTION:

0 = STOP
1 = CREATE, ADD TO, CHANGE, & LIST
2 = ADD ONE FILE TO END OF OTHER
3 = ADD ONE FILE TO MIDDLE OF OTHER
4 = SELECT AND CONF VAR FROM OLD FILE
5 = STATISTICAL ANALYSIS MENU
6 = SPACE REMAINING ON DATA DISK

WHICH?

Enter the number of the desired editing function and hit <RETURN>. (Note that for all programs you will normally need to hit <RETURN> after entering a response from the keyboard.) A response of "1" will run FILE MAKER, "2" will run FILE MERGER-END, "3" will run FILE MERGER-MIDDLE, "4" will run FILE VAR COMBINER, "5" will run STAT MENU, and "6" will run FILE SPACE REMAINING. (Note that you will have to add the latter program, for no listing has been provided for this program.)

FILE MAKER (1 = CREATE, ADD TO, CHANGE, & LIST):

This program can be used to create a new file or to edit a file that already exists on the data disk. This program will ask the following:

ACTION REQUIRED:

0 = STOP
1 = CREATE NEW FILE
2 = READ, ADD TO, CHANGE, OR LIST OLD FILE

WHICH?

Indicate desired action. If you want to create a new file, you will be asked for the "unique" name you would like to use for the new file. No existing file on the data disk can have this name (otherwise data from the older file would be lost.) You may type "CATALOG" if you wish to inspect the names of files already used on the disk. The program will automatically add the characters "L10" to the end of your new file's name to remind you that this file has a record length of 10. (A different value, of course, will be printed if you have changed the record length.) Thus, a file named "TEST" will become "TEST L10" on the disk. Use this new file name when you want to look at the file at a later point in time. If you want to edit an existing ("old") file, you will be asked for the name of the existing
file. (Again, you can type "CATALOG" to see the names of files on the disk.)

The following menu will be presented:

COMMANDS:
0 = GENERAL EDITING MENU OR STOP
1 = READ A RECORD
2 = ADD A RECORD
3 = CHANGE A RECORD
4 = LIST ALL RECORDS
5 = INSERT OR DELETE RECORD

WHICH?

A response of "0" will give you the option of returning to FILE EDITOR. A response of "1" simply will allow you to inspect an individual data item in the file. Respond "2" if you are going to add data to the file. If this is a new file, the first item of data you add will be stored in R1 (record number 1), the second in R2, the third in R3, etc. You will want to enter your data as it will be needed for your statistical programs. The data arrangement for an ANOVA program by Lane (1981) is typical: "The data must be arranged cell by cell, with all the data from the first subject preceding all the data from the second subject, and so on. Both the cells and the within-subjects scores should be arranged hierarchically (e.g., A1B1, A1B2, A1B3, A2B1, A2B2, A2B3)" p. 694. In Lane's example, the file you are creating would store the first subject's scores (A1B1 to A2B3) in R1 to R6, respectively. The second subject's scores (A1B1 to A2B3) would be stored in R7 to R12, respectively. To use a simpler example, assume the following set of data:

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

When the program asks "NEW DATA FOR R1 = ?", you will respond "3". Likewise, R2 = 6, R3 = 8, R4 = 14, R5 = 4...R12 = 7. If instead of creating a new file you would like to add data to an already existing file, this program will begin by asking you for the score for the next record (for the example above it would be R13.)

From the menu, a response of "3" will allow you to change the score of any record in the file. A response of "4" will allow you to list all the records of the file. Since the file contains only a sequence of records, you will be asked
for the "NUMBER OF DATA POINTS PER SUBJECT?" In our example, your answer would be "2". (The maximum number of variables a listing may have is limited to 50 without redimensioning a variable in the program.) You will be asked whether you want the listing on the screen or on the printer. "CONTROL-S" will temporarily halt the listing on the screen. The section of the program controlling the printout is written for an EPSON 80 printer. If you have a different printer you may need to edit lines 1440 to 1600 of the program (line 1450 allows the printout of up to 80 characters per line.)

From the menu, a response of "5" will allow you to either
INSERT or DELETE single record of a file. In the example
above, if you insert a new score at R5, the scores that had
been in R5 TO R12 (e.g., "4" to "7") would be moved into R6
to R13, respectively. Likewise, if you had instead deleted
the score at R7, the scores that had been in R8 to R12 would
be moved into R7 to R11, respectively.

FILE MERGER-END (2 = ADD ONE FILE TO END OF OTHER):
This program can be used to form a new data file that
contains the records of one existing file followed by the
records from a second existing file. Thus, if the data from
two groups of subjects are contained in two different files,
this program can be used to combine the data for an overall
analysis.

FILE MERGER-MIDDLE (3 = ADD ONE FILE TO MIDDLE OF OTHER):
This program can be used to form a new data file that
contains the first half records from one existing file, then
the first half records from a second existing file, and, for
finally, the second half records of the two existing files.
For example, if the first file contained 6 records and the
second contained 8, the new file would contain 14 records
formed by the data from R1, R2, R3, from the first file,
followed by the data from R1, R2, R3, R4 from the second
file, followed by the data from R4, R5, R6 from the first
file, followed by the data from R5, R6, R7, R8 from the
second file.

FILE VAR COMBINER (4 = SELECT AND COMP VAR FROM OLD FILE):
This program can be used to form a new data file that
contains a user-selected subset of subjects and variables
from one or more existing files. The order in which the
variables are entered into the new file can be specified.
In addition, new variables that are formed by summing, taking
the difference between, or averaging two variables can be
entered into the new file. For example, an existing file
that contains 8 scores (variables) from each of 50 subjects could be used to form a new file that contains data from the 10th through 30th subjects arranged as follows: variable 3, the sum of variables 2 and 3, the mean of variables 6 and 8. Note that this program, in conjunction with FILE MERGER-END, can be used to select and rearrange data for a variety of different types of statistical analyses.

STAT MENU (5 = STATISTICAL ANALYSIS MENU):
This program will present the following menu of statistical analysis programs:

- SELECT ONE:
 1 = BACKSTEP (REGRESSION ANALYSIS)
 2 = DEPENDENT T-TEST
 3 = INDEPENDENT T-TEST
 4 = GENERAL ANOVA

WHICH?

Program listings are provided for the DEPENDENT and INDEPENDENT T-TESTs so that you may see examples of how data files may be used by statistical programs. Consider the former program. Line 40 specifies the drive number of the data disk (E=2) and the random file record length (F=10).

Line 60 lets $@ =$ CHR(4). This line also instructs you to place the data disk in drive E (e.g., '2'). Line 170 asks you for the name of the data file (C$). Line 180 allows you to look at the catalog if you have forgotten your file's name. Line 190 OPENs the random-access file named C$ that is on the disk in drive E with a record length of F. Line 240 READs record number L from the file and assigns its value to variable A. Line 250 does the same for variable B. Line 310 CLOSEs the file. Line 330 allows the printer (an EPSON 80) to make a printout up to 80 columns wide. Line 310 returns to the FILE EDITOR. DEPENDENT T uses data arranged subject-by-subject. INDEPENDENT T uses data arranged by group.

Program listings are not provided for BACKSTEP or GENERAL ANOVA. BACKSTEP is an excellent multiple-regression analysis program written in Applesoft BASIC by Gorman and Primavesi (BRM!, 1981, 13, 703). GENERAL ANOVA is an Applesoft program adapted from an excellent ANOVA program written for a TRS-80 Model I by Lane (BRM!, 1981, 13, 694). This program allows for large designs (e.g., four or five factors), with both between- and within-subject variables. It also will handle designs with unequal cell sizes.
FOR SINGLE DRIVE SYSTEMS:

A single drive system can be used, if prior to running a program, the value of the first variable in the program is changed to "1" (This variable indicates the drive number of the disk containing the data files). FILE MAKER, Line 20: change A to 1; FILE MERGER-END, Line 30: change A to 1; FILE MERGER-MIDDLE, Line 30: change B to 1; FILE VAR COMBINED, Line 30: change C to 1; STAT MENU, Line 20: change A to 1; DEPENDENT T, Line 40: change E to 1; INDEPENDENT T, Line 40: change E to 1.

Although the program user will find it easiest to create data files on a disk that contains the editing programs, a separate data disk can be placed in the drive prior to inputting the name of a file.

PROGRAMS ON DISKETTE:

A diskette containing both the documented and more compact forms of the editing programs (see West, BRMI, 1983, 15, 387-388), as well as examples of statistical programs that can use data from the created files (programs run by STAT MENU), is available for $8 (to cover diskette and mailing costs). In addition, both one and two disk drive versions of the programs are included on the diskette.

If you have this diskette, be sure to back it up and use the back-up disk for the actual editing activities. DEPENDENT T uses data that is arranged subject-by-subject. INDEPENDENT T uses data arranged by group. Copies of BACKSTEP and GENERAL ANOVA are included on the diskette for your convenience. Program listings and instructions on their use have been made available without charge by the programs' authors (see Gorman and Primavera, BRMI, 1981, 13, 703, for BACKSTEP, and Lane, BRMI, 1981, 13, 694, for GENERAL ANOVA). Please refer to the appropriate reference if you intend to use either of these programs.

BACKSTEP uses data that are arranged in a subject-by-subject fashion. Gorman and Primavera have stated the following: "Program users should be familiar with the program instructions and limitations and should report any defects or potential errors to the authors. Users are requested to reference the use of the BASIC BACKSTEP program in research reports and articles (References: Gorman, B. S., & Primavera, L. H., BACKSTEP: A simple program for backward-selection multiple regression. Behavioral Research Methods and Instrumentation, 1980, 13, 391-392; Gorman, B. S., & Primavera, L. H. BASIC BACKSTEP: A simple backward-selection multiple regression program for
minicomputers and microcomputers. Behavioral Research Methods & Instrumentation, 1981, 13, 703).*

GENERAL ANOVA uses data arranged as discussed under the above section discussing data arrangement for the FILE MAKER program.

As with the other programs contained on the diskette, the statistical programs have been modified to supply printout on an 80 column EPSON 80 printer.
Data Editing Programs
Richard F. West
James Madison University
Harrisonburg, Virginia

NOTE: IN THE LAST TWO PROGRAMS, THE SYMBOL \(^{-2}\) HAS BEEN USED TO INDICATE EXPONENTIALS. USE THE \(-\) KEY ON YOUR APPLE.
FILE EDITOR

10 REM *** FILE EDITOR *** RICH JEST 12/6/82
20 CALL - 936: A = 2: REM A = DRIVE1. CHANGE A TO 1 IN SINGLE DRIVE SYSTEM
30 AS = CHR$(4)
40 PRINT: PRINT " *** GENERAL EDITOR (HEW) ***"
50 PRINT: PRINT "PUT EDITING MASTER DISK IN DRIVE1 & "
60 PRINT: PRINT "DATA FILE DISK IN DRIVE2:"A
70 PRINT: PRINT: PRINT "INDICATE DESIRED EDITING FUNCTION;"
80 PRINT: PRINT " 0 = STOP"
90 PRINT: PRINT " 1 = CREATE, ADD TO, CHANGE, & LIST"
100 PRINT: PRINT " 2 = ADD ONE FILE TO END OF OTHER"
110 PRINT: PRINT " 3 = ADD ONE FILE TO MIDDLE OF OTHER"
120 PRINT: PRINT " 4 = SELECT AND COPY VAR FROM OLD FILE"
130 PRINT: PRINT " 5 = STATISTICAL ANALYSIS MENU"
140 PRINT: PRINT " 6 = SPACE REMAINING ON DATA DISK"
150 PRINT: INPUT " WHICH? " :A
160 IF A = 0 THEN PRINT AS;"CLOSE": END
170 IF A = 1 THEN PRINT AS;"RUN FILE MAKER"
180 IF A = 2 THEN PRINT AS;"RUN FILE ADD"
190 IF A = 3 THEN PRINT AS;"RUN FILE CHANGE"
200 IF A = 4 THEN PRINT AS;"RUN FILE COPY"
210 IF A = 5 THEN PRINT AS;"RUN STAT MENU"
220 IF A = 6 THEN PRINT AS;"RUN FILE SPACE"
230 GOTO 70

FILE MAKER

10 REM *** FILE MAKER *** MODIFICATIONS BY RICH JEST ***
12/6/82 *** PORTIONS OF THIS PROGRAM HERE SUGGESTED BY DEMONSTRATION PROGRAM IN POOLE, MCNIFF, ACOOK
20 REM1 CREATE AND MAINTAIN RANDOM ACCESS FILES WITH LENGTH OF RECORDS SET BY VAR #
30 A = 2: B = 10: REM A = DRIVE1. USE A = 1 IF USING ONLY ONE DRIVE. # = RECORD LENGTH
40 AS = CHR$(4)
50 CALL - 936
60 PRINT: PRINT "THIS PROGRAM CREATE AND MAINTAINS:
PRINT: PRINT "RANDOM-ACCESS FILES. (DATA POINTS": PRINT: PRINT "CAN HAVE A MAX LENGTH OF "#": DIGITS"
60 DI = A(5000): DI = B(50)
70 PRINT: PRINT "ACTION REQUIRED": PRINT
90 PRINT " D = STOP"
100 PRINT " 1 = CREATE NEW FILE"
110 PRINT " 2 = READ, ADD TO, CHANGE, OR LIST OLD FILE"
120 PRINT: PRINT " WHICH?"
130 INPUT C
140 IF C = 0 THEN 150
150 IF C = 1 THEN 180
IF C = 2 THEN 310
170 GOTO D:
190 CALL = 936
200 INPUT DS: HOME
210 AS = ** REM \ CTRL-D
220 IF DS = "CATALOG" THEN PRINT AS;"CATALOG,D";A: GOTO 190
230 G:\\A\\260 GOTO 260
240 DS = DS + "L" + STRS (B): PRINT
250 AS; "RENAME"; DS; ";"; DS; ";"; AS; A
260 PRINT AS; "PRINT **** THIS IS NAME OF EXISTING FILE ****":
300 GOTO 190
270 POKE 216,0: PRINT AS; "OPEN"; DS; ";"; D; ";"; A; ";"; L; ";"; B: REM ** RECORDS UP TO A CHARACTERS LONG
280 PRINT AS; "WRITE"; DS; ";"; 20: REM \ WRITE RECORD ZERO
290 PRINT 0
300 PRINT AS; "CLOSE"; DS: REM \ CLOSES THE FILE
310 GOTO 340
320 CALL = 936
330 PRINT AS; "NAME OF OLD FILE": INPUT DS
340 IF DS = "CATALOG" THEN PRINT CHR$ (4): "CATALOG,D"; A;:
350 GOTO 320
360 AS = ";"; REM \ CTRL-D
370 PRINT AS; "OPEN"; DS; ";"; D; ";"; A; ";"; L; ";"; B: REM \ *** RECORDS UP TO B DIGITS LONG
380 PRINT AS; "READ"; DS; ";"; R0: REM \ READ RECORD ZERO
390 GOTO D: REM \ THE LAST RECORD NUMBER IN USE
400 PRINT AS: REM \ CANCEL READ COMMAND
410 CALL = 936: REM \ CLEAR SCREEN
420 PRINT AS; PRINTER: PRINT
430 PRINT AS; "COMMANDS": PRINT
440 PRINT " 0 = GENERAL EDITING MENU OR STOP"
450 PRINT " 1 = READ A RECORD"
460 PRINT " 3 = CHANGE A RECORD"
470 PRINT " 4 = LIST ALL RECORDS"
480 PRINT " 5 = INSERT OR DELETE RECORD"
490 PRINT AS; PRINT
500 PRINT AS; AS; "WHICH";
510 IF C = 0 THEN 170: REM \ BRANCH
520 IF C = 1 THEN 610: REM \ TO
530 IF C = 2 THEN 770: REM \ THE
540 IF C = 3 THEN 1010: REM \ SELECTED
550 IF C = 4 THEN 1270: REM \ ROUTINE
560 IF C = 5 THEN 1790
570 GOTO 390: REM (OR RE-DISPLAY THE MENU)
580 REM
590 REM \ *** READ A RECORD ***
600 REM
610 CALL = 936: REM \ CLEAR SCREEN
620 PRINT AS; "READ A RECORD": PRINT
630 PRINT AS; "WHICH RECORD NUMBER (0 TO STOP)";
640 INPUT E
650 IF E < 1 THEN 390: REM RETURN TO MAIN MENU
660 IF E > D THEN 610: REM RECORD DOES NOT EXIST
670 IF F = 0 AND E < = D AND E = INT (E) THEN GOTO 690
680 REM
690 PRINT A$; "READ:"; D$; "R:"; E; REM PREPARE TO READ RECORD
700 INPUT B$: REM READ THE DATA
710 REM
720 PRINT "R:"; E; "="; A$: REM DISPLAY THE DATA
730 GOTO 630: REM ASK FOR ANOTHER NUMBER
740 REM
750 REM *** ADD A RECORD ***
760 REM
770 CALL - 936: REM CLEAR SCREEN
780 F = D
790 PRINT : PRINT "ADD A RECORD": PRINT
800 PRINT "(PRESS <RETURN> TO STOP ADDING)"
810 F = F + 1
820 PRINT : NEON DATA FOR R"; F; "=";
830 INPUT B$: REM GET USER'S RESPONSE
840 G = LEN (HS)
850 IF G > R THEN PRINT : PRINT "**** "; B; "DIGITS MAX ****": PRINT CHO8 (?): GOTO 820
860 IF B$ = "" THEN 890
870 A$ = VAL (B$)
880 GOTO 800: REM LOOP FOR ANOTHER RECORD
890 IF B$ = "" AND F = D + 1 THEN 390
900 IF D = F - 1 THEN 950
910 D = D + 1: REM INCREMENTS LAST RECORD
920 PRINT A$; "WRITE"; D$; "R"; D; REM PREPARE TO WRITE
930 GOTO 390
940 PRINT A$; "WRITE"; D$; "R"; D; REM PREPARE TO WRITE
950 GOTO 900
960 PRINT D$: REM STORE UPDATED VALUE IN R0
970 PRINT A$; GOTO 390: REM CANCEL WRITE COMMAND
980 REM
990 REM *** CHANGE A RECORD ****
1000 REM
1010 CALL - 936: REM CLEAR SCREEN
1020 PRINT : PRINT "CHANGE A RECORD": PRINT
1030 PRINT "CHANGE WHICH RECORD (0 TO STOP)";
1040 INPUT E
1050 IF E < 1 THEN 390: REM RETURN TO MAIN MENU
1060 IF E > D THEN 1010: REM TRY AGAIN IF RECORD NOT ON FILE
1070 IF E > 0 AND E < = D AND E = INT (E) THEN GOTO 1090
1080 GOTO 390
1090 PRINT A$; "READ"; D$; "R"; E; REM PREPARE TO READ
1100 INPUT B$: REM READ THE RECORD
1110 PRINT A$; REM CANCEL READ COMMAND
1120 PRINT "CHANGE R"; E; "="; A$: TO ?; REM DISPLAY THE DATA
1130 PRINT "(PRESS <RETURN> NO TO CANCEL CHANGES)"
1140 PRINT "NEVR R"; E; "="; "": INPUT C$: REM GET USER'S RESPONSE
650 IF E < 1 THEN 390: REM RETURN TO MAIN MENU
650 IF E > D THEN 610: REM RECORD DOES NOT EXIST
670 IF E > 0 AND E < = D AND E = INT (E) THEN GOTO 690
680 GOTO 390
690 PRINT AS;"READ";DS;"R";E; REM PREPARE TO READ RECORD
700 INPUT BS: REM READ THE DATA
710 PRINT AS: REM CANCEL READ COMMAND
720 PRINT "R";E;:"BS:";BS: PRINT : REM DISPLAY THE DATA
730 GOTO 630: REM ASK FOR ANOTHER NUMBER
740 REM
750 REM *** ADD A RECORD ***
760 REM
770 CALL = 936: REM CLEAR SCREEN
780 F = D
790 PRINT : PRINT "ADD A RECORD": PRINT
800 PRINT "(PRESS <RETURN> TO STOP ADDING)"
810 F = F + 1
820 PRINT " NEW DATA FOR R";F;"": ";
830 INPUT BS: REM GET USER'S RESPONSE
840 G = LEN (HS)
850 IF G > N THEN PRINT : PRINT **** "B:" DIGITS MAX
860 **** : PRINT CHR (7) : GOTO 820
850 IF BS = "": THEN 890
870 A(F) = VAL (BS)
880 GOTO 800: REM LOOP FOR ANOTHER RECORD
890 IF BS = "": AND F = D + 1 THEN 390
900 IF D = F - 1 THEN 950
910 D = D + 1: REM INCREMENTS LAST RECORD
920 PRINT AS;"WRITE";DS;"R";D: REM PREPARE TO WRITE
930 PRINT A(D): REM SEND DATA TO FILE
940 GOTO 900
950 PRINT AS;"WRITE";DS;"R0": REM PREPARE TO WRITE RECORD ZERO
960 PRINT D: REM STORE UPDATED VALUE IN R0
970 PRINT AS: GOTO 390: REM CANCEL WRITE COMMAND
980 REM
990 REM **** CHANGE A RECORD ****
1000 REM
1010 CALL = 936: REM CLEAR SCREEN
1020 PRINT : PRINT "CHANGE A RECORD": PRINT
1030 PRINT "CHANGE WHICH RECORD (0 TO STOP)";
1040 INPUT E
1050 IF E < 1 THEN 390: REM RETURN TO MAIN MENU
1060 IF E > D THEN 1010: REM TRY AGAIN IF RECORD NOT ON FILE
1070 IF E = 0 AND E < = D AND E = INT (E) THEN GOTO 1090
1080 GOTO 390
1090 PRINT AS;"READ";DS;"R";E: REM PREPARE TO READ
1100 INPUT BS: REM READ THE RECORD
1110 PRINT AS; REM CANCEL READ COMMAND
1120 PRINT "CHANGE R";E;: "BS:"; BS; TO ? : REM DISPLAY THE DATA
1130 PRINT "(PRESS <RETURN> TO CANCEL CHANGES)"
1140 PRINT " NEW R";E;: "": INPUT CS: REM GET USER'S RESPONSE
1150 G = LEN (CS)
1160 IF G > R THEN PRINT ; PRINT **** "β" DIGITS MAX
1170 ****: PRINT CHR$ (7); GOTO 1020
1180 PRINT "RECORD "$E" UNCHANGED ! ! !"; REM LOOP IF
1190 GOTO 1030; REM NO CHANGES DESIRED
1200 PRINT A$;"WRITE":DS$;"R";E: REM PREPARE TO WRITE
1210 PRINT CS$: REM STORE CHANGE DATA
1220 PRINT A$: REM CANCEL WRITE COMMAND
1230 GOTO 1030: REM LOOP FOR ANOTHER RECORD TO CHANGE
1240 REM
1250 REM **** LIST ALL RECORDS ****
1260 REM
1270 CALL - 936: REM CLEAR SCREEN
1280 PRINT : PRINT "LIST ALL RECORDS": PRINT
1290 E = 0: REM RESET THE COUNTER
1300 E = E + 1: REM INCREMENT THE COUNTER
1310 IF E > 0 THEN 1350: REM STOP AFTER LAST RECORD
1320 PRINT A$:"READ";DS$;",R";E: REM PREPARE TO READ
1330 INPUT A(E): REM READ DATA INTO ARRAY
1340 GOTO 1300: REM LOOP FOR NEXT RECORD
1350 PRINT A$: REM CANCEL READ COMMAND
1360 H = 0
1370 PRINT : PRINT "NUMBER OF DATA POINTS PER SUBJECT? ":REM PRINT ****50 DATA POINTS
1380 MAX$: GOTO 1370: REM SETS J TO I AFTER FIRST COUNTER LOOP BELOW
1390 PRINT : PRINT "MODE OF LISTING": PRINT
1400 PRINT " 1 = ON SCREEN"
1410 PRINT " 2 = ON PRINTER"
1420 IF K = 1 THEN 1460
1430 PRINT : PRINT "TURN ON PRINTER"
1440 VR$ = 1
1450 PRINT CHR$ (9) + "$80N$"
1460 PRINT : PRINT "FILE = ";DS$: PRINT
1470 E = 0
1480 E = E + 1
1490 IF E > D THEN PRINT : PRINT : GOTO 1610
1500 J = J + 1: REM COUNTS TO THE NUMBER OF DATA POINTS
1510 PER SUBJECT
1520 IF J = 1 THEN PRINT : PRINT "S","H + 1","$": POKE
36,6;H = H + 1;J = 0
1530 B(J) = B(J) + A(E): REM Sums DATA POINTS
1540 IF J = 8 THEN PRINT : PRINT
1550 IF J = 16 THEN PRINT : PRINT
1560 IF J = 24 THEN PRINT : PRINT
1570 IF E < 10 THEN PRINT ":E":"": GOTO 1590
1580 IF E < 100 THEN PRINT ":E":"": GOTO 1590
1590 PRINT B(J);"$
1590 PRINT A(E)$; PRINT
1600 GOTO 1480: REM LOOP FOR NEXT RECORD
1610 FOR L = 1 TO I: PRINT "HEM OF VAR # ";L: = ";B(L -
1) / HIB(L - 1) = 0: NEXT
1620 FR$ = 0
1630 PRINT: PRINT "** ** ** END-OF-FILE"
1640 PRT 0
1650 PRINT "PRESS RETURN TO CONTINUE": REM REQUEST RESPONSE
1660 INPUT HS: REM GET USER'S RESPONSE
1670 GOTO 190: REM RETURN TO MAIN MENU
1680 REM
1690 REM ** ** ** STOP PROGRAM ** ** **
1700 REM
1710 PRINT AS:"CLOSE": REM CLOSE THE FILE
1720 CALL = 936: REM CLEAR SCREEN
1730 PRINT "PROGRAM COMPLETE."
1740 PRINT AS:"CLOSE"
1750 PRINT : INPUT "WANT 'RANDOM FILE EDITOR' MENU? <Y/N>:";ES
1760 IF ES = "Y" THEN PRINT AS;"RUN ?FILE EDITOR, D1"
1770 END
1780 REM
1790 REM *** INSERT OR DELETE RECORD ***
1800 REM
1810 CALL = 936
1820 PRINT : PRINT "DO YOU WANT TO INSERT OR DELETE RECORD?": PRINT
1830 PRINT " 0 = NEITHER"
1840 PRINT " 1 = INSERT"
1850 PRINT " 2 = DELETE"
1860 PRINT : INPUT "WHICH? "; C: PRINT : PRINT "*** WAIT ***"
1870 IF C = 0 OR C = 1 OR C = 2 THEN 1890
1880 GOTO 1810
1890 IF C = 0 THEN 390
1900 E = 0
1910 E = E + 1: IF E > D THEN 1930
1920 PRINT AS:"READ";DS:";R":E: INPUT A(E): GOTO 1910
1930 PRINT AS: REM CANCEL READ COMMAND
1940 IF C = 1 THEN M = 1: GOTO 1960
1950 IF C = 2 THEN M = 2: GOTO 1990
1960 IF M = 1 THEN PRINT : PRINT "NUMBER OF RECORD TO BE INSERTED?": INPUT C
1970 IF M = 1 THEN PRINT : INPUT "VALUE OF THIS NEW RECORD": N
1980 FS = STR$(N);G = LEN (FS); IF G > B THEN PRINT : PRINT "*** ";B: DIGITS MAX "***": PRINT CHR$(7): GOTO 1970
1990 IF N = 2 THEN PRINT : PRINT "NUMBER OF RECORD TO BE DELETED?": 0
2000 IF C < 1 OR C > D THEN 1960
2010 PRINT : PRINT "*** WAIT ***":E = 0;P = 0
2020 IF M = 1 THEN D = D + 1
2030 IF M = 2 THEN D = D - 1
2040 FOR E = 1 TO D
2050 IF M = 1 AND E = C THEN O = N: GOTO 2080
2060 IF M = 2 AND E = O THEN P = P + 1
2070 P = P + 1;Q = A(P)
2080 PRINT AS:"WRITE";DS:";R":E: PRINT Q
2090 NEXT
10 REM *** FILE MERGER-END 1/3/82 *** RICH WEST
20 REM *** ADDS RECORDS FROM FILE 2 TO END OF FILE 1 TO
30 FORM FILE 3
30 A = 2:B = 10: REM A = DRIVE$ 2, CHANGE TO A = 1 IF USING
30 ONLY ONE DRIVE. B = RECORD LENGTH
40 DIM A(5000)
50 AS = CHR$(4)
60 CALL = 936
70 PRINT : INPUT "NAME OF EXISTING FILE#1? "; BS
80 IF BS = "CATALOG" THEN PRINT AS; "CATALOG,"; D; A: GOTO 70
90 HOME
100 PRINT : INPUT "NAME OF EXISTING FILE#2? "; CS
110 IF CS = "CATALOG" THEN PRINT AS; "CATALOG,"; D; A: GOTO
120 100
130 HOME
140 PRINT : INPUT "UNIQUE NAME OF NEW FILE? "; DS
150 IF DS = "CATALOG" THEN PRINT AS; "CATALOG,"; D; A: GOTO
160 130
170 ONERR GOTO 190
180 DS = DS + " L" + STR$(B); PRINT
190 AS; "RENAME"; DS; ";"; DS; "; D"; A: GOTO
200 PRINT : PRINT "****THIS IS NAME OF EXISTING FILE****":
GOTO 130
210 REM *** DATA FROM FILE 1
220 POKE 216,0; PRINT AS; "OPEN"; BS; "; L"; B
230 PRINT AS; "READ"; BS; " R0"
240 INPUT Ci; REM NUMBER OF RECORDS
250 FOR D = 1 TO C
260 PRINT AS; "READ"; BS; " R"; D
270 INPUT A(D)
280 NEXT
290 PRINT AS; "CLOSE"
300 REM *** DATA FROM FILE 2
310 POKE 216,0; PRINT AS; "OPEN"; CS; "; L"; B
320 PRINT AS; "READ"; CS; " R0"
330 INPUT E; REM NUMBER OF RECORDS
340 FOR D = 1 TO E
350 PRINT A(F)
360 NEXT
370 F = F + 1
380 PRINT AS; "READ"; CS; "; R"; D
390 INPUT A(F)
400 NEXT
410 PRINT AS; "WRITE"; DS; " R0"
REM *** FILE MERGER-MIDDLE 12/3/82 *** RICH WEST
REM *** ADDS FIRST HALF OF RECORDS FROM FILE 2 TO THOSE FROM FILE 1 AND THEN REPEATS PROCESS FOR SECOND HALF
REM B = ZIC = 101 GOTO 50 REM B = DRIVE# 2. USE 1 IF USING SINGLE DRIVE ONLY. C = RECORD LENGTH
PRINT A$("WRITE";B$;"",R$);G
PRINT A(G)
NEXT
PRINT A$("CLOSE")
PRINT "=";H$;" THEN PRINT A$;"RUN FILE EDITOR,D1"
END

/FILE MERGER-MIDDLE/

10 REM *** FILE MERGER-MIDDLE 12/3/82 *** RICH WEST
20 REM *** ADDS FIRST HALF OF RECORDS FROM FILE 2 TO THOSE FROM FILE 1 AND THEN REPEATS PROCESS FOR SECOND HALF
30 B = ZIC = 101 GOTO 50 REM B = DRIVE# 2. USE 1 IF USING SINGLE DRIVE ONLY. C = RECORD LENGTH
40 PRINT A$("WRITE";B$;"",R$);G
50 DIM A(5000)
60 A$ = CHRS (4)
70 CALL 936
80 PRINT : PRINT "NAME OF EXISTING FILE#1: ";C$
90 IF C$ = "CATALOG" THEN PRINT A$("CATALOG,D";B;GOTO 80
100 HOME
110 FOR G = 1 TO D
120 IF DS = "CATALOG" THEN PRINT A$("CATALOG,D";B;GOTO 110
130 HOME
140 PRINT : PRINT "NAME OF NEW FILE#2: ";B$
150 IF B$ = "CATALOG" THEN PRINT A$("CATALOG,D";B;GOTO 140
160 ON ERR GOTO 200
170 B$ = B$ + " L" + STRS (C); PRINT A$("RENAME","B$","B$","D$);B
180 PRINT : PRINT "THIS IS NAME OF EXISTING FILE":GOTO 170
190 REM *** DATA FROM FILE 1
200 POKE 216,0: PRINT A$("OPEN",C$,"D","L","L",C
210 PRINT A$("READ",C$);R0
220 INPUT E: REM NUMBER OF RECORDS
230 FOR F = 1 TO E
240 PRINT A$("READ",C$;"R";F
250 INPUT A(F)
250 NEXT
270 PRINT A$("CLOSE")
280 REM *** DATA FROM FILE 2
290 PRINT A$("OPEN",D$;"L",C
300 PRINT A$("READ",D$;"R0"
310 INPUT G: REM NUMBER OF RECORDS
320 H = F - 1
330 FOR V = 1 TO G
340 H = H + 1
350 PRINT A$:"READ";DS;"","R";F
360 INPUT A(H)
370 NEXT
380 F = H
390 PRINT A$:"CLOSE"
400 PRINT A$:"OPEN";BS$;"","L";C
410 FOR D = 1 TO E / 2;A = D: GOSUB 40
420 NEXT
430 A = E
440 FOR D = ((E / 2) + 1) TO ((E / 2) + (G / 2))
450 A = A + 1: GOSUB 40
460 NEXT
470 A = E / 2
480 FOR D = ((E / 2) + (G / 2) + 1) TO (E + (G / 2))
490 A = A + 1: GOSUB 40
500 NEXT
510 A = E + (G / 2)
520 FOR D = (E + (G / 2) + 1) TO (E + G):A = A + 1: GOSUB 40
530 NEXT
540 PRINT A$:"WRITE";BS$;"","R0"; PRINT A
550 PRINT A$:"CLOSE"
560 PRINT: INPUT "WANT 'RANDOM FILE EDITOR' MENU?" <Y/N>:BS$;ES
570 IF ES = "Y" THEN PRINT A$:"RUN FILE EDITOR,D1"
580 END

/FILE VAR COMBINER/

10 REM *** FILE VAR COMBINER *** 12/10/82 *** RICH WESK
20 REM *** CREATES NEW RANDOM FILE CONTAINING SELECTED OR
25 COMPUTED VARIABLES FROM OLD FILE
30 C = 2: D = 10:E = 6090: REM *** C = DRIVE# FOR DATA DISK;
35 D = MAX RECORD LENGTH; E = ARRAY TOTAL
40 GOTO 330
45 CALL - 936:F = 0: REM SUB FOR OLD VAR
50 PRINT: PRINT "NEW VAR ";G; PRINT " = OLD FILE";H;
55 VAR ";: INPUT L
60 FOR H = 0 TO P
65 F = F + 1
70 A(F,G) = B(M,L)
75 NEXT
80 RETURN
90 REM *** SUB FOR DIFF
100 PRINT: PRINT "NEW VAR ";G; PRINT " = OLD FILE";H;
110 VAR ";: INPUT ";A: PRINT " = ";
120 FOR H = 0 TO P
130 F = F + 1
140 A(F,G) = B(M,A) - B(M,B)
150 NEXT
160 RETURN
170 REM *** SUB FOR SUM
180 PRINT: PRINT "NEW VAR ";G; PRINT " = OLD FILE";H;
190 CALL - 936:F = 0: REM SUB FOR SUM
200 PRINT: PRINT "NEW VAR ";G; PRINT " = OLD FILE";H;
VAR #7 + OLD VAR #7": INPUT " ?";A: PRINT " + ";: INPUT B 210 FOR H = 0 TO P 220 F = F + 1 230 A(F,G) = B(H,A) + B(H,B) 240 NEXT 250 RETURN 260 Xm = - 936;F = 0: REM SUB FOR MEAN 270 PRINT : PRINT "NEW VAR #7;G: PRINT " = MEAN OF OLD FILE#";H: VAR #7 & OLD VAR #7": INPUT " ?";A: INPUT " & ";B 280 FOR N = 0 TO P 290 F = F + 1 300 A(F,G) = (B(H,A) + B(H,B)) / 2 310 NEXT 320 RETURN 330 BS = CHR$(4) 340 CALL - 936 350 H = H + 1:K = 0: REM DATA FROM OLD FILE#2 360 IF H > 1 THEN PRINT : PRINT "NAME OF OLD FILE#";H:; INPUT CS: GOTO 380 370 PRINT ; PRINT "NAME OF OLD FILE?":;CS 380 IF CS = "CATALOG" THEN PRINT BS;"CATALOG,";C: GOTO 360 390 IF H > 1 THEN 510 400 HOME 410 PRINT : PRINT "INPUT NUMBER OF SUBJECTS IN OLD FILE? ";N 420 IF H = 1 THEN PRINT : PRINT "INPUT ":;AX NUMBER OF VARIABLES IN OLD FILE? ";Q: IF Q < > INT (Q) OR Q < 1 OR Q > 50 THEN GOTO 420 430 IF H = 1 THEN S = INT ((E - (N - 1) - (N * Q)) / N): IF S > 600 THEN S = 600 440 DIM B(N,Q);A(N,S) 450 PRINT ; PRINT "NEW FILE CAN HAVE UP TO ";S;" VARIABLES" 460 CALL : PRINT "UNIQUE NAME OF NEW FILE?":DS 470 IF DS = "CATALOG" THEN PRINT BS;"CATALOG,";D;GOTO 460 480 OMERR GOTO 510 490 DS = DS + "L" + STR$(D); PRINT BS;"RNAME ";DS;"",;DS;"",;D;C 500 PRINT : PRINT ****THIS IS NAME OF EXISTING FILE****: GOTO 460 510 POKE 216,0; PRINT : PRINT " *** WAIT **** 520 REM *** DATA FROM OLD FILE#1 530 PRINT BS;"OPEN",CS;"",;D;"",;L;";D 540 PRINT BS;"READ",CS;"",;BO 550 INPUT R: REM NUMBER OF RECORDS 560 T = R / N: REM V=VARIABLES IN OLD FILE 570 FOR I = 1 TO N 580 FOR J = 1 TO T:K = K + 1 590 PRINT BS;"READ",CS;",;R;K 600 INPUT B(I,J) 610 NEXT 620 NEXT 630 PRINT BS;"CLOSE" 640 IF H > 1 THEN 740 650 PRINT : PRINT "DO YOU WANT NEW FILE TO:"
PRINT: PRINT "1 = USE ALL SUBJECTS"
670 PRINT: PRINT "2 = NOT USE ALL SUBJECTS"
680 PRINT: INPUT " WHICH? "; F
690 IF F = 2 THEN 720
695 O = 1: P = N
710 GOTO 740
720 PRINT: INPUT "NEW FILE SHOULD BEGIN WITH SUBJECT#"; O
730 PRINT: INPUT "NEW FILE SHOULD END WITH SUBJECT#"; P
740 CALL = 936
750 G = G + 1
760 PRINT: PRINT "NEW VAR "; G; " IS "; PRINT
770 PRINT: PRINT " 1 = SINGLE OLD VAR"
780 PRINT: PRINT 2 = DIFF BETWEEN TWO OLD VAR"
790 PRINT: PRINT " 3 = SUM OF TWO OLD VAR"
800 PRINT: PRINT " 4 = MEAN OF TWO OLD VAR"
810 PRINT: PRINT " 5 = FINISHED WITH OLD FILE"; H
820 PRINT: INPUT " WHICH? "; U
830 IF U = 1 THEN GOSUB 50
840 IF U = 2 THEN GOSUB 120
850 IF U = 3 THEN GOSUB 190
860 IF U = 4 THEN GOSUB 260
870 IF U = 5 THEN 900
880 IF U = INT (U) AND U > 0 AND U < 6 THEN 750
890 GOTO 760
900 G = G - 1: REM DATA FROM SECOND OLD FILE
910 PRINT: PRINT "NEED DATA FROM SECOND OLD FILE?<Y/N>"
920 PRINT: PRINT "(FILE MUST HAVE ";N; " SUBJECTS)"; : INPUT A$
930 IF A$ = "Y" THEN GOSUB 40: REM NUMBER OF SUBJECTS
940 REM *** DATA TO NEW FILE
950 PRINT B$: "OPEN"; D$: ";L;D"
960 O = I: P = 1 TO (P + 1) = O: REM NUMBER OF SUBJECTS
970 FOR J = 1 TO G: V = V + 1
980 PRINT B$: "WRITE"; D$: ";R;V"
990 PRINT A(I, J)
1000 NEXT I
1010 NEXT I
1020 PRINT B$: "WRITE"; D$: ";R;K"
1030 PRINT V: REM NUMBER OF RECORDS
1040 PRINT B$: "CLOSE"
1050 PRINT: PRINT "WANT 'RANDOM FILE EDITOR' MENU?
1060 IF ES = "Y" THEN PRINT B$: "RUN FILE EDITOR, DI"
1070 END

/STAT MENU/
10 REM *** STAT MENU *** RICH WEST 12/30/82
20 A = 2: REM A = DRIVE#. SET A = 1 IN SINGLE DRIVE
SYSTEM
30 A$ = CHR$ (4)
40 HOME
50 PRINT: PRINT "PUT DATA DISK IN DRIVE#"; A
60 PRINT: PRINT "SELECT OK"
70 PRINT: PRINT "0 = STOP"
PRINT "1 = BACKSTEP (REGRESSION ANALYSIS)"
PRINT "2 = DEPENDENT T-TEST"
PRINT "3 = INDEPENDENT T-TEST"
PRINT "4 = GENERAL ANOVA"
PRINT "Which?":B
IF B = 0 THEN HOME: PRINT "Input 'WANT 'FILE EDITOR' menu? 'Y/N'?":H$ IF B$ = "Y" THEN PRINT AS;$RUN FILE EDITOR,DL
IF B$ = "N" THEN END
IF B = 1 THEN PRINT AS;$RUN BACKSTEP
IF B = 2 THEN PRINT AS;$RUN DEPENDENT T
IF B = 3 THEN PRINT AS;$RUN INDEPENDENT T
IF B = 4 THEN PRINT AS;$RUN GENERAL ANOVA
GOTO 40

/DEPENDENT T/

CLEAR
REM *** DEPENDENT T-TEST 12/16/82
REM *** MODIFICATIONS BY RICH WEST
E = 2:F = 10: REM "*** ENTER DATA BY SUBJECT. E = DRIVE$2. CHANGE TO E = 1 FOR ONE DRIVE SYSTEM. F = RANDOM FILE RECORD LENGTH"
HOME
PRINT "DEPENDENT T-TEST"
PRINT "MODE OF DATA ENTRY:";
PRINT 1: DATA FILE"
PRINT "2 = INPUT FROM KEY BOARD"
PRINT "3 = DATA STATEMENTS"
PRINT "Input "Which?":H
IF H = 1 THEN 160
IF H = 2 THEN 200
IF H = 3 THEN 200
GOTO 50
B$ = CHR$(4): PRINT "PUT ADA DISK IN DRIVE$":B
PRINT "NAME OF DATA FILE? ":CS
PRINT "CATALOG" THEN PRINT B$;$CATALOG,D$;D$;E$:GOTO 160
PRINT "NUMBER OF SUBJECTS? ",&K
FOR I = 1 TO K
READ A,B
IF H = 3 THEN 230
IF H = 2 THEN PRINT "PRINT "SUBJECT$":I;":";
FIRST SCORE = ":A: INPUT ":SECOND SCORE = ":B
240 IF H = 1 THEN L = L + 1: PRINT B$;$READ;CS$;R$;L:
INPUT A
250 FOR I = 1 TO L
PRINT B$;"READ";CS$;R$;L:
NEXT I
LET N = N + A
LET O = O + B
LET Q = O + (A - B)
LET R = R + (A - B) ® 2
10 CLEAR
20 REM *** INDEPENDENT T-TEST 12/16/82
30 REM *** MODIFICATIONS BY RICH WEST
40 E = 2:F = 10:REM "ENTER DATA BY SUBJECT. E = DRIVE#:CHANGE TO E=1 FOR ONE DRIVE SYSTEM. P = RANDOM FILE RECORD LENGTH"
50 HOME
60 PRINT:PRINT "INDEPENDENT T-TEST"
70 PRINT:PRINT "MODE OF DATA ENTRY:"
80 PRINT:PRINT:PRINT "1 = DATA FILE"
90 PRINT:PRINT:PRINT "2 = INPUT FROM KEY BOARD"
100 PRINT:PRINT:PRINT "3 = DATA STATEMENTS"
110 PRINT:PRINT:PRINT:PRINT "5 = PRINT FILE"
120 IF E = 1 THEN 160
130 IF E = 2 THEN 200
140 IF E = 3 THEN 200
150 GOTO 50
160 BS = CHR$(4):PRINT:PRINT:PRINT "PUT DATA DISK IN DRIVE#:E"
170 PRINT:PRINT:PRINT:PRINT "NAME OF DATA FILE? ";CS
180 IF CS = "CATALOG" THEN PRINT BS;"CATALOG,D";E:GOTO 160
190 PRINT BS"OPEN";CS",";D";E",";L";F
200 FOR J = 1 TO 2
210 PRINT:PRINT:PRINT "NUMBER OF SUBJECTS IN GROUP#";I:;INPUT A(I)
220 X = 0:L = 0
230 FOR J = 1 TO A(I)
240 IF H = 3 THEN READ A
250 IF H = 2 THEN PRINT:PRINT "SUBJECT#";I:;PRINT "SCORE#";J:PRINT:PRINT:PRINT "INPUT ";A
260 IF H = 1 THEN O = O + 1:PRINT BS;"READ";CS",";R";O:
INPUT A

270 PRINT B$; REH CANCEL READ COMMAND
280 LET K = K + A
290 LET L = L + A * 2
300 NEXT J
310 LET B(I) = K / A(I)
320 LET C(I) = L - (K * 2 / A(I))
330 NEXT I
340 IF H = 1 THEN PRINT B$; "CLOSE"
350 LET D = A(1) + A(2) - 2
360 LET Q = B(1) - B(2)
370 R = ((C(1) + C(2)) / D) * (1 / A(1) + 1 / A(2))
380 LET S = Q / SQR(R)
390 PR# 1
400 PRINT CHR$(9) + "00N";
410 PRINT
420 PRINT "MEAN GROUP 1 ="; SPC(2); B(1); SPC(2); "N ="; SPC(2); A(1)
430 PRINT "MEAN GROUP 2 ="; SPC(2); B(2); SPC(2); "N ="; SPC(2); A(2)
440 PRINT "DIFFERENCE = "; B(1) - B(2); ""
450 PRINT "INDEPENDENT T =", SPC(2); S;
460 PRINT "DF = "; D; ""
470 PR# 0
480 PRINT : INPUT "ANOTHER INDEPENDENT T-TEST?<Y/N>"; AS
490 IF AS = "Y" THEN 10
500 PRINT CHR$(4); "RUN FILE EDITOR, D1"